
1.  Introduction
The mechanisms that regulate the acceleration, transport, and loss of energetic particles in the Earth's radiation 
belts have long been investigated, both from the standpoint of fundamental research and for practical space 
weather applications (Horne et al., 2005). In this region, so-called “killer electrons” can be accelerated to rela-
tivistic energies in just a few days, or even minutes, posing a dangerous threat to satellites (Horne, 2007). The 
radiation belts are composed of a collisionless, tenuous plasma that obeys Maxwell's equations and whose distri-
bution can be described by the first-principle Vlasov equation. However, due to the massive temporal and spatial 
separation of the leading physical processes, the customary approach to study radiation belt electrons is to use a 
model reduction known as quasi-linear theory, introduced in the seminal study of Kennel and Engelmann (1966), 
and soon adopted in radiation belt physics (Lyons et al., 1972; Summers et al., 1998). The motion of charged 
particles in a dipolar magnetic field can be decomposed into three quasi-periodic orbits and corresponding adia-
batic invariants. In the quasi-linear procedure, one can expand particle orbits around their unperturbed trajec-
tories in the Vlasov-Maxwell equations and derive a diffusion equation in adiabatic invariant space (Schulz & 
Lanzerotti, 1974). The scattering due to resonant wave-particle interactions violates the conservation of adiabatic 
invariants and it is responsible for most of the particle dynamics (since collisions are absent in this tenuous 
plasma environment). These effects can be described by the diffusion coefficients, hence dramatically reducing 
the complexity of the model. Furthermore, given the different timescales associated with the three adiabatic 
invariants, one can decouple the diffusion in the radial direction from the one in energy and pitch angle, ending 
up with a one-dimensional diffusion equation, valid for particles at a constant value of the first and second 
adiabatic invariants. Alternatively, one can describe the time evolution of the particles' Phase Space Density 
(PSD) as a stochastic process due to small random changes in the variables, which leads to the one-dimensional 
Fokker-Planck equation (Chandrasekhar, 1943):
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where f is the particles' PSD, Φ is the third adiabatic invariant (magnetic flux enclosed by a drift shell), t is time, 
and Equation 1 is understood to be valid for constant values of first and second adiabatic invariants. The drift 
and diffusion coefficients (CΦ and DΦ, respectively) have the physical meaning of mean displacement and mean 
square displacement per unit time. Typically, Equation 1 is further simplified by assuming a simple relationship 
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between CΦ and DΦ, which can be derived in the case of a dipole field (Fälthammar, 1966) or in absence of source 
or sinks (Roederer & Zhang, 2016): CΦ = 1/2(∂DΦ/∂Φ) so that, upon transforming Φ to the normalized equatorial 
radial distance L we get the familiar expression:
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Equation  2 has constituted the backbone of a large part of radiation belt research for the past 60  years, and 
even though it is now understood that energy and pitch angle diffusion are crucial ingredients for an accurate 
description of electrons dynamics (Shprits et al., 2009; Thorne, 2010; Tu et al., 2013; Xiao et al., 2010), the 
relative importance of radial diffusion is still vigorously debated (Lejosne & Kollmann, 2020). Although the 
radial diffusion coefficient DLL can be calculated from first principles (Fälthammar, 1965; Liu et al., 2016), as 
well as for event-specific cases using in-situ or ground-based magnetic and electric field or particle measure-
ments (Cunningham, 2016; L.-F. Li et al., 2020; Ripoll et al., 2016; Schulz & Lanzerotti, 1974; Tu et al., 2012) 
(keeping in mind the several assumptions built in the quasi-linear approximation (Camporeale, 2015a)), its spec-
ification requires detailed knowledge about the power spectrum and/or the distribution of Ultra Low Frequency 
(ULF) waves that are resonant with electrons (Dimitrakoudis et al., 2015; Ozeke et al., 2012). Hence, most of 
the research focus has been centered on finding an efficient and accurate empirical parameterization of the 
diffusion coefficient DLL, possibly as a function of quantities that are available in real-time. The parameteriza-
tions most used in the literature use the geomagnetic index Kp as the main driver. The model by Brautigam and 
Albert (2000) (henceforth BA) is possibly the most widely used parameterization of DLL as a simple function of 
Kp and L. More recent works include Ali et al. (2016); Drozdov et al. (2020); Lejosne (2019); Ozeke et al. (2014); 
Wang et al. (2020). A Bayesian approach that accounts for the possible source of uncertainties has been presented 
in Sarma et al. (2020).

Here, we approach the problem of defining and parameterizing the coefficients of the radial diffusion equations 
from a pure data-driven standpoint and, for the first time, using machine learning techniques. Since Equation 2 
does not account for any injection or loss due to non-diffusive processes, it is customary to add a source/loss term 
in the form f/τ. When τ is a general function of L and t, that term is general enough to account for all processes that 
are not included in the diffusive term. In practice, because we want to be able to distinguish losses (for instance 
due to particles falling into the loss-cone) from sources (for instance due to scattering in energy and pitch angle) 
we split the loss/source term as:
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where both τ and S are defined as positive, and have the units of time. Equation 3, however, is not solvable as 
an inverse problem, being strongly ill-posed: there is no unique solution and, in fact, a trivial solution is one 
where DLL = 0 and all the rate of change in f is accounted for by the source/loss terms. A possible way to alle-
viate such ill-posedeness is to enforce a given parameterization to the coefficients. Lanzerotti et al.  (1970) is 
one of the earliest work that has proposed a given parameterization for the diffusion coefficient and the electron 
lifetime (in particular, by assuming that they are both time-independent and functions of L). A data assimilation 
technique (Kalman filter) has been used in Koller et al. (2007) to identify sources and losses associated with the 
BA diffusion coefficient. A Bayesian approach to determine the optimal coefficients (but still within a given 
functional form) has successfully been followed by Sarma et al. (2020); however, those approaches inevitably 
restrict the functional form of the free parameters and they possibly miss more general and insightful solutions. 
Here, we follow a different strategy to alleviate the problem of ill-posedness. We generalize Equation 2 to an 
advection-diffusion Fokker-Planck equation of the form:
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with C(L, t) a positive-definite drift coefficient. The positiveness of C imposes a constraint on the solution, yet 
still allows the drift term to effectively act as both a source or a loss term with respect to the diffusive term (i.e., 
it can be either positive or negative, depending on the sign of the derivative). In other words, we seek a solution 
of the Fokker-Planck equation in drift-diffusion form (Equation 1), without assuming any relationship between 
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the drift and diffusion coefficients, since in general CΦ ≠ 1/2(∂DΦ/∂Φ) (Allanson et al., 2022; Lemons, 2012). 
The additional drift term is physically related to rapid particle injections into the inner magnetosphere which have 
often been observed by satellites, and which result from rapid advective transport rather than a diffusion process 
(see e.g., Bortnik et al. [2008]; Z. Li et al. [2021]).

To solve this inverse problem, we use a Physics Informed Neural Network (Raissi et  al.,  2019) (PINN), that 
derives f, DLL, and C as general smooth functions of L and t, by enforcing both consistency with data and a small 
residual of the drift-diffusion Equation 4. We use 3 years of Van Allen Probes data (that we consider ‘noiseless’) 
in the inverse-problem. The procedure approximates the phase space density f by means of a neural network 
(learning from the observed data), and learns DLL and C as the optimal coefficients that solve Equation 4 for the 
approximated f. We emphasize that all of the physics of interest and the particle dynamics are encoded in those 
coefficients, whose analysis then becomes extremely insightful.

We compare our results with the following benchmarks: the Brautigam and Albert (2000), the Ali et al. (2016) 
and the Ozeke et al. (2014) parameterizations for the diffusion coefficients. For each of these, we use the formula 
presented in Y. Shprits et al. (2005) for the electron lifetime τ (widely used in the literature; Drozdov et al. [2017]). 
The forward model is computationally very cheap and it is solved with the finite difference method presented in 
Welling et al. (2012) (slightly adjusted by substituting the advection term ∂(Cf)/∂L in lieu of the loss term f/τ).

This work has several goals. First, we present the first-ever application of the PINN framework to solve an inverse 
problem and derive the optimal coefficients for the radial transport problem using real spacecraft observations. 
Although PINN is gaining increasing attention in all fields of applied mathematics and engineering, its potential 
in space physics is still not fully realized (Bortnik & Camporeale, 2021). Second, we showcase some examples 
of data mining approaches that can deepen our physical understanding and possibly unveil new processes. We 
emphasize that all of the physics of interest and the particle dynamics are encoded in the drift and diffusion 
coefficients, whose analysis is extremely insightful. We regard that as a fine example of data-driven knowledge 
discovery, which is one of the ultimate goals of using machine learning in physics (Camporeale, 2019). Third, we 
perform data-driven discovery of the physics which is missing in the traditional quasi-linear diffusion equation, 
routinely used to study electrons in the radiation belts. We show that the drift term is often comparable with the 
diffusion one, and we analyze in detail their relative importance, with varying L, geomagnetic activity, and phase 
space density values. Fourth, we derive what is possibly the simplest and most interpretable parameterization of 
drift and diffusion coefficients as functions of L only, that is still able to capture most of the dynamics. We show 
that this parameterization is competitive and often outperforms less interpretable parameterizations presented in 
the literature. Eventually, we achieve one of the most important and long-standing goals of scientific machine 
learning: we use a general but opaque ML technique (PINN) to solve an inverse problem and we discover that 
the free parameters of our Fokker-Planck equation (diffusion and drift coefficients) can be well approximated 
by a simple, interpretable formula. That is, we perform data-driven, ML-aided model order reduction. Finally, 
we use the PINN solution for an automatic event identification task, namely to identify events for which the 
one-dimensional radial approximation does not hold, requiring other physical mechanisms, such as energy and 
pitch-angle resonant interactions.

2.  Methods
2.1.  Forward Model

Equation 4 is solved by means of an unconditionally stable, second order accurate, Crank-Nicholson scheme 
discussed in Welling et al. (2012). For completeness, we report the numerical discretization here:
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where indexes n and j represent discretization in time and space, with time steps Δt and ΔL respectively, and 
𝐴𝐴 𝐴𝐴𝑗𝑗 = 𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿∕𝐿𝐿

2
𝑗𝑗
 . Equation 5 is a linear equation that can be written in matrix form with tri-diagonal matrices and 
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is solved by a standard LU decomposition. For all the results presented, we use Δt = 1 (hours) and ΔL = 0.05. 
Observations are linearly interpolated to the computational grid both at L  =  2.0 and L  =  5.5 to be used as 
time-dependent boundary conditions, and at initial times for all values of L to be used as initial conditions.

2.2.  Physics-Informed Neural Networks

Physics-informed Neural Networks (PINN) are a framework for solving forward and inverse problems involv-
ing nonlinear partial differential equations (Raissi et al., 2019). The theoretical foundation of PINNs lies in the 
well-known universal approximation property of neural networks (Hornik et al., 1989) that essentially allows 
neural networks to accurately approximate a large class of continuous functions. The basic idea of PINNs is 
rather simple, and it exploits the fact that the output of a neural network is a continuous and differentiable func-
tion (almost everywhere). Moreover, PINNs take advantage of the ability of modern neural network libraries 
to automatically calculate exact derivatives with respect to the input variables, by applying the chain rule of 
differentiation (this is known as autodiff in machine learning jargon; Géron [2019]). Hence, each term in a partial 
differential equation (PDE) can be calculated exactly on a set of collocation points within the domain, and the 
PDE itself can be used as a penalization term in the loss function minimized by the neural network. Upon conver-
gence, a PINN outputs a function that approximately solves the PDE and matches the given data on the points 
where it has been trained.

An interesting feature of PINNs that we use in this work is their ability to solve inverse problems in a mesh-free 
fashion and with a minimal set of assumptions. However, the possibility of finding general forms for the free 
parameters of a PDE has the potential drawback of the converged solution not being unique. We approach this 
issue by employing an ensemble method, namely by solving the inverse problem several times and averaging the 
top 5 solutions. Because the solution f spans several orders of magnitude in the L domain, we perform the trans-
formation f = e g and solve for g:
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The PINN is designed as a combination of three coupled neural networks, each taking a point in (L, t) as input and 
outputting the value of f, DLL, and C at that point, respectively. Those three outputs are then combined in the loss 
function, which is the sum of the mean square error with respect to the observations (in logarithm), and the mean 
square of the residual of Equation 6. Boundary conditions (at L = 2 and L = 5.5) are enforced by neglecting the 
residual term in the loss function on those points (i.e., the function f is forced to converge to the boundary values). 
The neural network architectures are standard and have been selected by progressively increasing their complex-
ity and monitoring changes in the converged values of the loss function until a plateau was observed. Other 
hyper-parameters were not optimized. The networks use a tanh activation function in all the layers. The network 
that outputs the solution f uses six inner layers with [30, 20, 20, 20, 20, 20] neurons, while the two networks 
outputting the coefficients DLL and C have three inner layers with [30, 20, 10] layers. To perform the optimization 
we use a combination of the Adam optimizer (Kingma & Ba, 2014) and the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method (Zhu et al., 1997), both within the Tensorflow framework (Abadi et al., 2016).

2.3.  Data

We use observations from the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen 
Probes spacecraft (Blake et al., 2013). Van Allen Probes is a NASA twin satellite mission that was active for 
7 years, since its launch on 30 August 2012. Its primary mission was to address how populations of high-energy 
charged particles are created, lost, and dynamically evolve within Earth's magnetic trapping region (Fox & 
Burch, 2014). Due to the unprecedented quality and quantity of data collected, Van Allen Probes have marked 
a golden era for radiation belt studies (W. Li & Hudson,  2019). Here, we limit our study to electrons with 
first adiabatic invariant μ = 700 MeV/G and second adiabatic invariant K = 0.1 RE G 0.5, which corresponds to 
approximately 1 MeV electron energies in the heart of the radiation belt. We used the TS05 magnetic field model 
(Tsyganenko & Sitnov, 2005) to calculate the adiabatic invariants (specifically, we have used the IRBEM library 
publicly available at https://github.com/PRBEM/IRBEM and the code for TS05 available at https://geo.phys.
spbu.ru/∼tsyganenko/empirical-models/magnetic_field/ts05/) The dataset is comprised of ∼570,000 data points 

https://github.com/PRBEM/IRBEM
https://geo.phys.spbu.ru/%7Etsyganenko/empirical-models/magnetic_field/ts05/
https://geo.phys.spbu.ru/%7Etsyganenko/empirical-models/magnetic_field/ts05/


Journal of Geophysical Research: Space Physics

CAMPOREALE ET AL.

10.1029/2022JA030377

5 of 19

spanning the time range 01-Nov-2013 to 30-Sep-2017. Not all the MagEIS observations result in a valid calcula-
tion of adiabatic invariants, hence the chosen time interval is not uniformly sampled. The largest interval between 
consecutive data points is 2:45 hr, and the average interval is about 4.5 min. Note that, as mentioned above, the 
PINN method is mesh-free and does not require the data points to be defined on a grid.

Figure 1 shows the PSD (log scale) of the whole dataset as a function of L. The vertical dashed line divides the 
dataset into a training set (70% of the whole dataset, from 01-Nov-2013 to 30-Oct-2016) and a test set (30% of 
the whole dataset, from 01-Nov-2016 to 30-Sep-2017). This period was specifically chosen to be on the declining 
phase of the solar cycle which is historically associated with frequent and intense geomagnetic activity. One can 
notice that the dataset is sparse both in time and space since it essentially follows the highly elliptical trajectory 
of the satellites.

2.4.  Metrics and Benchmarks

Our quantity of interest, the phase space density f, changes by several orders of magnitude between L = 2 and 
L = 5.5. Hence, it is not straightforward to design a single metric for model performance. A thorough analysis of 
several metrics often used in radiation belt modeling can be found in Liemohn et al. (2021); Morley et al. (2018). 
Here, we are interested in studying the model accuracy at given values of L, rather than averaging over the whole 
domain. We define and use three different errors, where each metric quantifies a different aspect of model perfor-
mance. Following Morley et al. (2018), we characterize accuracy by defining the percentage symmetric accuracy 
ζ as:

𝜁𝜁𝑘𝑘 = 100 ⋅ exp
(

𝑃𝑃𝑘𝑘

(

|log
(

𝑓𝑓∕𝑓𝑓
)

|

))

,� (7)

where 𝐴𝐴 𝑓𝑓  and f are the ground-truth values taken by observations and the corresponding values produced by a 
model, respectively. Pk represents the k − th percentile (i.e., P50 is the median) calculated over all values at fixed 
L. This represents a generalization of the median symmetric accuracy (Morley, 2016) for quantiles other than the 
median, which allows for estimate error bars (i.e., ζk is monotonically increasing with increasing k). The second 
metric we employ characterizes bias and is called the symmetric signed percentage bias SSPB, again generalized 
from the definition in Morley et al. (2018):
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(
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|

)

− 1
)

� (8)

Note that, by taking the absolute value after calculating the percentile, SSPB is not ordered when considering 
different percentiles Pk (hence it does not allow to estimate error bars). Finally, we define the error ɛ as the median 
value at fixed L of the absolute error of the logarithmic phase space density. That is:

𝜀𝜀(𝐿𝐿) = 𝑃𝑃50|log10𝑓𝑓 − log10𝑓𝑓 |� (9)

Figure 1.  Phase Space Density of the whole dataset, in logarithmic scale, as function of L. The vertical dashed line divides 
the dataset into training (to the left) and test (to the right) sets. First adiabatic invariant μ = 700 MeV/G and second adiabatic 
invariant K = 0.1 RE G 0.5.
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We benchmark our results against several parameterization for the diffusion 
coefficient: the BA model (Brautigam & Albert [2000]; Ozeke et al. [2014], 
and Ali et al. [2016]), which are all functions of L and the geomagnetic index 
Kp only (Rostoker, 1972). Their formulas are:

���
�� = �10 ⋅ 10(0.506��−9.325)

������
�� = 2.6 ⋅ �6 ⋅ 10(0.217�+0.461��−8)

+ 6.62 ⋅ �8 ⋅ 10(−0.0327�2+0.625�−0.0108��2+0.499��−13)

����
�� = exp(−16.951 + 0.181�� ⋅ � + 1.982�)

+ exp(−16.253 + 0.224�� ⋅ � + �)

�

The following definition of electron lifetime is employed (Drozdov 
et al., 2017) for the BA and Ozeke et al. parameterizations:

� = 10 for� ≤ ���

= 6∕�� for� > ���
�

where Lpp is the plasmapause location, empirically estimated with the formula in Carpenter and Anderson (1992):

𝐿𝐿𝑝𝑝𝑝𝑝 = 5.6 − 0.46𝐾𝐾𝐾𝐾max� (10)

Kpmax being the maximum value of the geomagnetic index Kp 24 hr prior. Ali et al. (2016)’s parameterization 
does not use a loss term.

2.5.  Ensemble Approach

In this work we initialize neural networks following the so-called Xavier initialization (Glorot & Bengio, 2010), 
that is by drawing the initial weights of the neurons in layer l from a normal distribution with zero mean and 
variance σ 2 = 1/N l, with N l the number of neurons in layer l. The biases are set equal to zero. This initialization 
is particularly effective when using tanh activation functions. We have solved the PINN described above for 20 
different random initializations of the underlying neural networks, each time training for 100,000 epochs (we 
note that some of the networks might have converged with a smaller number of iterations). Moreover, we have 
verified that the results described in the following do not substantially depend on the number of PINNs trained, 
i.e., the results are well converged. The best five solutions in terms of the error ɛ(L), Equation 9, computed on 
the training set are shown in Figure 2 as black lines. Blue, magenta, and yellow lines denote the BA, Ozeke et al., 
and Ali et al. solutions, respectively. Not surprisingly, the PINN solutions consistently outperform those three 
benchmark solutions. However, it is interesting that the simple approach of averaging the best 5 diffusion and 
drift coefficients yields a result that also outperforms the benchmarks and indeed is very close to each of the five 
ensemble members. The error of the PINN ensemble mean is shown in Figure 2 as a red line. This is not a trivial 
result, because from Equation 6 one can see that averaging the coefficients DLL and C do not yield a solution that 
is the average of the ensemble members' solutions. Figures 3 and 4 (top panels) show respectively the best five 
realizations of the diffusion coefficient DLL and the corresponding drift coefficient C as heat maps in logarithmic 
scale and as a function of time (horizontal axis) and L (vertical axis). The bottom panels show the error of each 
realization with respect to the coefficient calculated by averaging the best five coefficients. Such an average of 
the best five is shown in Figure 5 for DLL (left) and C (right).

3.  Results
3.1.  Statistical Analysis of Coefficients

Here we perform a statistical analysis of the optimal coefficients derived with PINN on the training set. First, 
we show in Figure 6 the distribution of the PSD f as a function of L. The heat map shows the counts in each bin, 
normalized to the largest number for a constant value of L. The statistics are computed over about 25,000 hr, span-
ning 3 years of data (01-Nov-2013 to 30-Oct-2016). One can notice that three regimes naturally appear: one for 

Figure 2.  Error ɛ as a function of L, computed over the whole training set. 
Blue, magenta, and yellow lines are for the baseline models BA, Ozeke et al., 
and Ali et al., respectively. Five black lines denote the top five solutions from 
the ensemble run, and the red line represents the solution obtained by using 
the mean of the top five diffusion and drift coefficients.
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L ≲ 3.2 where f is approximately constant at levels of 10 −10, one for 3.2 < L ≲ 4.5 where f rapidly increases and it 
has a large spread covering the range 10 −10 < f < 10 −4 and the third regime at larger L where the L − dependence 
is again flattened, even though the spread in values remains relatively large. Figure 7 (left panel) shows the distri-
bution of the diffusion coefficient DLL as function of L. The gray area represents the interval between the 25th and 
75th percentile (for a given L), and the orange line denotes the median. One can notice that the spread increases by 
moving further away from the coordinate L ∼ 3.2. Also, the slope of the distribution undergoes several regimes. 
For reference, we overlay the curves L 10 (yellow) and L 20 (magenta). The former is adopted in the BA parame-
terization and is consistent with the distribution of DLL for small L, while for large L the latter L − dependence 
seems more appropriate. A more detailed examination of this distribution is shown in the right panel of Figure 7. 
Here, we have ranked column-wise (i.e., for constant L) the number of counts in each bin (the bins are uniformly 
spaced in log10DLL and L). The heat map shows the top 20 ranks, with black signifying the top rank (i.e., bins with 
the largest number of counts at constant L, and white with the lowest rank (20 or above). In this way, we are able 
to distinguish different trajectories for DLL, and in particular a bifurcation of values, particularly at large L. The 
same bifurcation is even more prominent in the distribution of C, shown with the same format in Figure 8, where 

Figure 3.  Top 5 diffusion coefficients (top) and corresponding errors with respect to coefficient obtained by averaging them (bottom), in logarithmic scale.

Figure 4.  Top 5 diffusion drift (top) and corresponding errors with respect to coefficient obtained by averaging them (bottom), in logarithmic scale.



Journal of Geophysical Research: Space Physics

CAMPOREALE ET AL.

10.1029/2022JA030377

8 of 19

one can notice two different regimes being approximately separated at L ∼ 3.5. Interestingly, for L > 3.5, C can 
vary by one or two orders of magnitude.

The presence of (at least) two distinct regimes confirms that the physics of interest is different within and outside 
the plasmapause. Here we do not explicitly model the plasmapause location (see, e.g., Chu et al. [2017]; Guo 
et al. [2021]; Malaspina et al. [2020]), hence the change in the distributions slopes between L = 3 and L = 3.5 
should be attributed to a statistically averaged plasmapause location. The spread in the coefficients is harder to 
interpret physically, although certainly driven by variations in the boundary conditions at L = 2 and L = 5.5. We 
note that one of the important aspects of PINN-based insight discovery is identifying regions in parameter space 
that are poorly constrained or carry greater error, as specific areas that require better understanding and further 
investigation. Finally, Figure 9 shows the ranked joint distribution of DLL (horizontal axis) and C (vertical axis). 
Both quantities are on a logarithmic scale. While there seems to be an almost linear dependence between the 
two coefficients for relatively small values (≲10 −2), several branches appear for large values, possibly indicating 
different physical regimes.

3.2.  Relative Importance of Drift and Diffusion Terms

In order to understand the relative importance of the diffusion and drift terms in Equation 4 we define their ratio 

as 𝐴𝐴 𝐴𝐴 =
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 . In Figure  10, the distribution of r (in logarithmic scale, vertical axis) is 

shown as a function of L (horizontal axis). The distribution is normalized to 
the maximum value of counts per L-value. The black solid line at log10r = 0 
indicates an equal balance between drift and diffusion, and the region below 
that line represents a stronger diffusion than drift. One can notice that in the 
inner magnetosphere (L ≲ 4) the two terms are approximately balanced, while 
diffusion plays a larger role with increasing L in the outer belt. Figure 10 can 
be interpreted in the sense of local versus global losses, where the former 
are captured by the drift term and the latter by the diffusion term. Typically, 
local diffusion at μ = 700 MeV/G is controlled by the hiss and chorus waves 
and radial diffusion becomes very low at the lower L-shell. On the other 
hand, hiss waves will more likely be a cause of local losses at low L-shell, 
providing a steady decay time, shorter than the one due to radial diffusion. It 
is important to notice that this picture might change for lower μ values, which 
is something that can be explored in the future using this technique.

We further analyze the relative contribution of the drift and diffusion terms 
by studying the ratio r as a function of log10f and L, and for different geomag-
netic activity, represented by the Auroral Electrojet index AE, in Figure 11 
(left panel: AE < 100, middle panel: 100 ≤ AE < 300, right panel: AE >= 

Figure 5.  Diffusion (left) and drift (right) coefficients obtained by averaging the top 5 solutions shown in Figures 3 and 4.

Figure 6.  Distribution of the Phase Space Density f as a function of L. The 
heat map shows the counts in each bin, normalized to the largest number for a 
constant L. Here and in following Figures, the statistics is computed on about 
25,000 hr, spanning 3 years of data (01-Nov-2013 to 30-Oct-2016).
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300). Interestingly, at low L drift is more dominant than diffusion for larger values of PSD. Also, the range of 
L in which diffusion is dominant slightly shifts to smaller L with increasing geomagnetic activity. This analysis 
unambiguously shows an unexpected relatively large contribution of non-diffusive drift in the time evolution of 
the phase space density.

3.3.  Effective Electron Lifetime and Sources

As explained above, in this approach electron losses and sources are not included explicitly, and the last two terms 
of Equation 3 (f/τ and f/S) are replaced by a drift term. However, effective lifetimes associated with losses and 
sources can be derived at each point in time and space by calculating f/(∂Cf(L, t)/∂L) and defining this quantity 
as τ when it is positive, and −S when it is negative. Notice that both τ and S are positive and have the units of 
days. Their distribution is shown in Figure 12, as functions of L (logarithmic vertical scale). Here, the different 
shades of gray denote the area covered by [1-99], [10-90], and [25-75] percentiles at a constant L value. Once 
again, a distinguishing feature is the existence of two regimes: for small L both lifetimes are very large (i.e., the 
corresponding loss/source terms f/τ and f/S are negligible), but their value decreases substantially with increasing 
L until they plateau at large L. It is interesting that the range of values taken by τ (i.e., the gray area) also increases 
significantly with larger L, to the point that at L = 5, τ can range approximately three orders of magnitude. In the 

Figure 7.  Distribution (left) and rank distribution (right) of the diffusion coefficients DLL as function of L-shell. Left: The 
gray area represents the interval between the 25th and 75th percentile (for a given L-shell), and the orange line denotes 
the median. The yellow and magenta lines are shown as a reference for L 10 and L 20, respectively. The black line is a cubic 
interpolation fit. Right: Dark colors indicate top ranks, and white indicates a rank equal or larger than 20. The ranking is 
performed by sorting the number of counts in each bin, at a constant L.

Figure 8.  Distribution (left) and rank distribution (right) of the drift coefficient C as function of L. Left: The gray area 
represents the interval between the 25th and 75th percentile (for a given L), and the orange line denotes the median. The black 
line is a cubic interpolation fit. Right: dark colors indicate top ranks, and white indicates a rank equal or larger than 20. The 
ranking is performed by sorting the number of counts in each bin, at a constant L.
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left panel of Figure 12, the black line denotes the parameterization by Shprits 
et al. (2005) used in the BA and Ozeke et al. models. The underestimation of 
τ at small L might be the cause of the large errors for low L in those models 
(see Figure 2).

Several mechanisms that locally enhance the phase space density have been 
investigated in the literature (Boyd et al., 2018; Hudson et al., 2020; Jaynes 
et al., 2015). Figure 13 shows the source term S over the whole training set, in 
space (vertical axis) and time (horizontal axis). The interesting feature is that 
local injection of phase space density can sporadically extend to low values 
of L, down to L ∼ 3.5–4. Although in the majority of cases the timescale 
associated with such injections is of the order of tens or hundreds of days, 
there are cases where S ∼ 1 day, hence comparable with the timescale of local 
diffusion and losses.

3.4.  Feature Selection

The PINN method described above derives DLL and C as generic functions of 
time and space (t, L), spanning the whole training period. In order to under-

stand the relationship between the diffusion and drift coefficients and their physical drivers, here we perform a 
feature selection analysis. This analysis can be used, in later works, to inform machine learning models that seek 
to generate DLL and C as a function of past known quantities, for space weather forecasting purposes. Feature 
selection is an extensive topic in the machine learning literature (see, e.g., J. Li et al. [2018]). Here, we use the 
backward elimination technique based on generalized linear models, which we briefly describe in the following. 
First, we define a minimal set of features, based on our physical intuition: since the radiation belt is ultimately 
driven by the solar wind variability, we include solar wind quantities observed at the L1 (first Lagrangian point) 
and propagated in time to the magnetosphere bow-shock that are well known to be drivers of geomagnetic activity 
(Kilpua et al., 2015; Wing et al., 2016). Those solar wind quantities are taken from the hourly NASA OMNI data-
set and interpolated to the time when the coefficients are defined. Table 1 lists the 12 features initially considered. 
Note that all the features are evaluated at the same time of the coefficients DLL and C, except for ΣPSD which is 
averaged over the 10 prior hours. A generalized linear model is built using all combinations of those features up 
to a quadratic order (a total of 91 terms for C and 78 terms for DLL, including the intercept). The linear model 
naturally provides the standardized coefficients (so-called t-Statistic or Z-score) for each term, defined as the 
ratio between the coefficient calculated for that term by solving a least-square problem, and its standard deviation. 
A large value of the standardized coefficient rejects the hypothesis that the coefficient is zero (null hypothesis). 
In the backward elimination procedure, we iteratively eliminate the coefficient with the smallest Z-score (in 

absolute value) and train a new model with all the terms remaining, until 
only one term is left. This provides us with a ranking or selection of the 
features. Figure 14 illustrates the top 10 features for DLL and C, respectively, 
as a function of the coefficient of determination R 2 (note the different vertical 
scales in the left and right panels). The features are ranked from left to right 
with decreasing importance, and the reported R 2 is intended for a model that 
uses all features listed to the left (i.e., adding one at a time). The red dashed 
line represents the largest R 2 achieved when all the features are included. In 
order to add robustness to the procedure, each model is trained on randomly 
selected 80% data in the training set.

It is interesting to notice that the solar wind features have lower rankings 
than features that use PSD and boundary conditions. In other words, (at least 
for the values of adiabatic invariants μ and K under consideration) the solar 
wind information contained in the PSD and the boundary condition is more 
informative for DLL and C than using the solar wind directly. However, one 
should notice that the reported ranking might be susceptible to the specific 
algorithm used (in our case backward elimination) since many features are 
strongly correlated to each other. A more comprehensive study of the most 

Figure 9.  Ranked joint distribution of DLL and C. Dark colors indicate top 
ranks, and white indicates a rank equal or larger than 20. The ranking is 
performed by sorting the number of counts in each bin, at a constant L.

Figure 10.  Distribution of r (logarithmic scale) as a function of L. The 
number of counts is normalized, for each value of L, to its maximum value. 
The black solid line denotes r = 1, that is exact balance between the drift and 
diffusion terms.
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efficient time lag between solar wind and diffusion and drift coefficients, following the methodology of Wing 
et al. (2016) is under way.

3.5.  Interpretable Parameterization of Drift and Diffusion Coefficients

Eventually, in the grand scheme of scientific machine learning, one would like to use advanced but often opaque 
techniques (such as PINN) to extract physical insight from the data, with the final goal of exploiting such new 
insights to advance our knowledge and possibly derive new interpretable models. In a sense, that follows Occam's 
razor argument that suggests that one should seek the most parsimonious yet accurate model. Here, we close the 
circle of our inquiry by deriving what is possibly the simplest parameterization of DLL and C. The feature selec-
tion procedure (Figure 14) demonstrates that most of the variance in both DLL and C can be attributed to changes 
in L. In other words, L is the best unique predictor for the coefficients, and therefore we aim to describe them as 
a function of L only, by fitting the PINN-derived values of DLL and C with a cubic interpolator, shown with black 
lines in the left panels of Figures 7 and 8, respectively. Not surprisingly, the cubic interpolator is a good approx-
imation of the median values. The derived formulas for the cubic fit are the following:

log10𝐷𝐷𝐿𝐿𝐿𝐿 = −0.0593𝐿𝐿3 + 0.7368𝐿𝐿2 − 1.33𝐿𝐿 − 4.505

log10𝐶𝐶 = 0.0777𝐿𝐿3 − 1.2022𝐿𝐿2 + 6.3177𝐿𝐿 − 12.6115
� (11)

In order to assess the goodness of this approximation, we use it in a forward model solution (see section 2) and 
we compare the results with two benchmarks: a solution derived from the BA diffusion coefficients (Brautigam 

Figure 11.  Distribution of r (logarithmic scale) as a function of L and log10(PSD) for three geomagnetic levels (left panel: AE < 100, middle panel: 100 ≤ AE < 300, 
right panel: AE >= 300).

Figure 12.  Distribution of the loss term τ (left) and S (right) as a function of L. The gray areas denote different percentile 
ranges and the orange line represents the median value at a given L. Vertical axis in logarithmic scale.
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& Albert,  2000), and another derived by using the diffusion coefficients 
proposed in Ozeke et al. (2014) (a comparison against the Ali et al. [2016] 
model is not shown since it was found to yield too large errors [Drozdov 
et al., 2021]). For both cases we solve Equation 2 with the addition of a loss 
term (−f/τ), parameterized as in Gu et al. (2012); Orlova et al. (2016), since 
the inclusion of such term, is standard practice to account for wave-particle 
scattering due to hiss and chorus waves, and it is known to improve accu-
racy (see section Metrics and Benchmarks). In Figure  15 we show (left) 
the percentage symmetric accuracy ζ, Equation 7 and (right) the symmetric 
signed percentage bias SSPB, Equation 8 (see Section 2) calculated over the 
whole test set (1 year of data), as a function of L. Blue, red, and black lines 
denote the results from the baselines by BA and Ozeke et al., and by using 
the PINN-derived cubic fit, respectively. In the left panel of Figure 15, the 
solid squares denote the median values ζ50 and the error bars are calculated as 
the spread between ζ25 and ζ75. In the right panel, positive values are in solid 
and negative values in dashed lines. One can notice that the simple cubic 
approximation of Equation 11 yields results comparable or superior to the 
ones obtained with more sophisticated models (all errors are by definition 

going to zero at the boundary). Figure 16 presents a measure of spread for the results obtained with the cubic 
parameterization (left), the Ozeke et al. (middle), and the BA (right) models. In each panel, the light and dark and 
blue areas denote respectively the [10-90] and [25-75] percentiles for the logarithm of the PSD (horizontal axis) 
obtained from Van Allen Probes data (over the 1 year test set), while the cyan solid line represents the median, as 
a function of L (vertical axis). With the same format, light and dark grey areas represent the [10-90] and [25-75] 
percentiles for the output of the respective models, while the black solid line represents the median. One can 
notice that the results obtained with the PINN-derived cubic fit are statistically more consistent with the data, for 
all values of L. The Pearson correlation coefficient is reported in each panel and denotes the linear correlation 
between (logarithm of) model outputs and Van Allen Probes data.

Finally, we present in Figure 17 the PSD resulting from the forward models using the three different parameteri-
zations (BA in red, Ozeke et al. in yellow and PINN-derived cubic fit in purple), compared against the Van Allen 
Probes data (blue), for the whole period covered in the test set. The top and bottom panels are for L = 5 and L = 4, 
respectively. In all cases, the simulations have initial and boundary conditions taken from the data. For L = 5, the 
PSD resulting from the new parameterization presented here is consistently more accurate than the two baseline 
models, which tend to underestimate the Phase Space Density. At L = 4 none of the three models is particularly 
accurate, although the PINN is often orders of magnitude closer to the observations than the other two models. 

Note that logarithmic scales are used on the vertical axis. All the results are 
for the first adiabatic invariant μ  =  700  MeV/G and the second adiabatic 
invariant K = 0.1 RE G 0.5.

3.6.  Automatic Event Identification

One of the by-products of the PINN approach outlined in this paper is the 
possibility of studying how well the observational data are consistent with 
the solution of the underlying PDE. As mentioned in the Introduction, the 
derivation of the radial diffusion Equation 4 is based on several assumptions, 
one of which is the conservation of the first and second adiabatic invariant. 
Breaking those invariants can cause local diffusion in energy and pitch-angle 
(Camporeale, 2015; Tu et al., 2013). By investigating how small the residual 
of the PDE is on the domain, one can easily identify times when any of the 
quasi-linear assumptions do not hold, and hence Equation 4 cannot capture 
some of the physical mechanisms that generate the data. Figure 18 shows the 
residual of Equation 4 plotted as a heat map over the whole training period. 
For ease of visualization, it has been normalized to its maximum value, and 
the color scale is capped at a value of 0.3. The red dashed lines on the bottom 
of the figure represent times at which the residual contains values in the 99 

Figure 13.  Heat map of the effective source term log10S in time and L over 
the whole training set. The colors are saturated at 10 3 and white areas denote 
regions where there is no source, but a loss term.

Feature Meaning

L Spatial coordinate in Equation 2

Kp Geomagnetic index

PSD log10 of the phase space density

Σ PSD Average of PSD along 10 prior hours

ΣL PSD Moving average of PSD along L (10 ΔL)

BCu PSD Upper boundary condition (L = 5.5)

BCl PSD Lower boundary condition (L = 2.0)

Bz z-component of the interplanetary magnetic field

V solar wind speed

VBz product of V and Bz

Newell Newell coupling function (Newell et al., 2007)

DLL log10(DLL), used as a feature for C

Table 1 
Features Tested in the Backward Elimination Algorithm, and Their Meaning
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percentile of its distribution. The list of these ‘events’ is reported in Table 2. Most of these periods are associated 
with moderate or strong geomagnetic storms, dropout events, or flux enhancements, and have already been stud-
ied in the literature. When that is the case, some references that explicitly analyze data from that period are cited 
in the last column. For other events, we have not found previous studies in the literature, and we encourage the 
community to analyze them.

Figure 14.  Backward elimination results for DLL (left) and C (right). Each symbol denotes the coefficient of determination 
R 2 of a linear model that uses only the corresponding feature, in addition to all features shown on its left. The dashed red line 
represents the upper limit, obtained when all the features are taken into account in a generalized linear model (78 terms in 
total for DLL and 98 for C). The meaning of each feature is explained in Table 1.

Figure 15.  Percentage symmetric accuracy ζ (Equation 7) (left) and symmetric signed percentage bias SSPB (Equation 8) (right) calculated over the whole test set 
(1 year of data), as a function of L. Blue and red lines denotes the BA and Ozeke et al. baseline models, respectively, while the cubic parameterization in Eqs. (11) is 
shown in black. In the left panel, the solid squares denote the median values ζ50 and the error bars are calculated as the spread between ζ25 and ζ75. In the right panel, 
positive values are in solid and negative values in dashed lines.
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4.  Conclusion
The process of understanding the mechanisms underlying a physical process, and the ability to describe such 
mechanisms with the elegant and succinct formalism of partial differential equations (PDEs) lies at the core of 
scientific discovery. However, the way in which scientists extract information from experiments and observations 
(data) and encode that information into PDEs has seen dramatic changes over the last decade, when methods orig-
inating in machine learning have started playing an increasingly important role. Currently, there is a rich literature 
on data-driven discovery of PDEs (see, e.g., Berg & Nyström [2019]; Boullé et al. [2021]; Long et al. [2018]; 
Raissi  [2018]; Rudy et  al.  [2017]; Udrescu & Tegmark  [2020]; Xu et  al.  [2019]; Zhang & Lin  [2018]). The 

Figure 16.  Measure of spread for the results obtained with the cubic parameterization (left), the Ozeke et al. (middle) and the BA (right) models. In each panel the 
light and dark and blue areas denote respectively the [10-90] and [25-75] percentiles for the logarithm of the phase space density (horizontal axis) obtained from Van 
Allen Probes data (over the 1 year test set), while the cyan solid line represents the median, as a function of L (vertical axis). With the same format, light and dark grey 
areas represent the [10-90] and [25-75] percentiles for the output of the respective models, while the black solid line represents the median. The Pearson correlation 
coefficient is reported in each panel, and denotes the linear correlation between (logarithm of) model outputs and Van Allen Probes data.

Figure 17.  Phase Space Density resulting from running the forward model with different coefficient parameterization, for the whole test set. Red, yellow and purple 
lines denote the BA, Ozeke et al. and physics informed neural network-derived cubic parameterizations, respectively. The Van Allen Probes data is represented in blue. 
The vertical axis is in logarithmic scale. First adiabatic invariant μ = 700 MeV/G and second adiabatic invariant K = 0.1 RE G 0.5.
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published methods can be loosely divided into two classes. On one hand, 
one can create a large dictionary of terms that contain algebraic, differential, 
and integral operators and search the space of all (or many) combinations of 
those terms for the optimal PDE that describes the data (i.e., the PDE whose 
solution is an acceptable approximation of the data). Two seminal examples 
of this approach are Rudy et al. (2017) (using sparse regression) and Udrescu 
and Tegmark  (2020) (using symbolic regression). On the other hand, one 
can restrict the search for the optimal PDE to a specific class of functionals, 
thus setting up the problem of PDE discovery as an inverse problem, where 
the time and space dependence of free parameters (such as for instance, drift 
and diffusion coefficients) needs to be learned. Physics-Informed Neural 
Network, introduced in the study by Raissi et al.  (2019), falls in this cate-
gory, and it is the approach used in this paper. Here, we have presented a 
framework that solves the problem of finding the optimal coefficients for a 
Fokker-Planck equation (inverse problem) with a Physics-Informed Neural 
Network, applied to the study of energetic radiation belt's electrons, and using 
for the first time real space satellite observations (Van Allen Probes). This 
approach opens several possible avenues for future investigations. In this 
study, we have showcased several of them.

Figure 18.  Heat map of the residual of Equation 4, normalized on its 
maximum value, over the training set. The red dashed lines denotes time at 
which the value of the residual is in the 99 percentile of its distribution.

Start time End time Previously studied in the literature?

30-Dec-2013 04-Jan-2014 CIR-associated storm (Shen et al., 2017)

10-Feb-2014 10-Feb-2014

14-Feb-2014 20-Feb-2014 Geomagnetic storm due to multiple interacting ICMEs

(Kilpua et al., 2019; Vlasova et al., 2020)

25-Jul-2014 7-Aug-2014

08-Sep-2014 18-Sep-2014 Dropout event

(Alves et al., 2016; Jaynes et al., 2015; Ma et al., 2020; Ozeke et al., 2017)

24-Dec-2014 24-Dec-2014

15-Mar-2015 20-Mar-2015 CME-associated storm

(Baker et al., 2016; Shen et al., 2017)

15-Apr-2015 17-Apr-2015

12-May-2015 14-May-2015 CIR-associated storm (Shen et al., 2017)

07-Jun-2015 28-Jun-2015 CIR and CME-associated storms(Baker et al., 2016; Shen et al., 2017)

Moderate event(Reeves et al., 2020);

Sudden Particle Enhancements at Low L Shells (Turner et al., 2017)

19-Jul-2015 23-Jul-2015 Sudden Particle Enhancements at Low L Shells (Turner et al., 2017)

17-Aug-2015 31-Aug-2015 Moderate event (Reeves et al., 2020)

05-Oct-2015 09-Oct-2015 Moderate event (Reeves et al., 2020)

03-Nov-2015 06-Nov-2015

08-Dec-2015 11-Dec-2015

14-Dec-2015 28-Dec-2015 Moderate and strong storms

(Boyd et al., 2018; L.-F. Li et al., 2020; Sotnikov et al., 2019)

27-Jan-2016 07-Feb-2016 Dropout event (Wu et al., 2020)

15-Feb-2016 19-Feb-2016 Moderate event(Reeves et al., 2020); Fast magnetosonic waves(Yu et al., 2021)

01-May-2016 14-May-2016 Moderate event(Reeves et al., 2020; Moya et al., 2017)

Note. The last column indicates references in case that event has been studied in the literature.

Table 2 
List of Events Automatically Generated
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Specifically, we have investigated the possibility that the time evolution of the Phase Space Density of electrons 
in the Earth's radiation belt could be described by the combination of (and the competition between) a diffusion 
and a drift term. It was found that the data is more consistent with the inclusion of a non-diffusive drift mecha-
nism and it was discovered that the phase space distribution is an important parameter in determining the coeffi-
cients. These findings challenge several decades of literature that have exclusively focused on diffusive processes.

The data-driven approach enabled by PINN allows to unambiguously test such hypothesis, by determining the 
optimal drift and diffusion coefficients that, used in Equation  4, result in the solution most consistent with 
observations. Interestingly, we have shown that, at least for the values of first and second adiabatic invariants 
considered here, drift and diffusion are competing for L ≃ 4, while diffusion becomes increasingly dominant for 
larger values of L. Obviously, as powerful as it is, the PINN method does not solve the issue of ill-posedness of 
the inverse problem. Namely, there is no guarantee about the uniqueness of the solution. Indeed, we have verified 
that different realizations of the coefficients are possible and equally valid. Interestingly enough, we have also 
verified that not only do the best five coefficients used in this study yield solutions that have comparable errors 
with respect to the data but that the average of the coefficients (analyzed in detail in Figures 5–11) also yield a 
similar level of error.

Furthermore, discovering the optimal diffusion and drift coefficients allows for data-mining them in order to 
learn their dependence on physical parameters and the statistical behavior of their profile (Figures 3–9). Second, 
one can re-derive effective loss and source terms, and study their behavior in space and time (Figures 12 and 13). 
In this way, we have discovered fast sporadic injections of PSD at L ∼ 3.5–4 that might occur on a ∼1 day times-
cale (Figure 13). The analysis has also highlighted a deficiency in modeling the loss term τ at low L in previous 
works (Figure 12). Third, we have used the PINN-discovered coefficients DLL and C and their learned dependence 
on L to build a simple and interpretable model that yields an excellent approximation (and forecast) of the PSD 
(Figure 15), with no free parameters, other than the boundary conditions. In our opinion, this step represents the 
state of the art in scientific machine learning, where a simple, analytical, interpretable expression for physical 
parameters has been discovered by way of using a powerful, yet opaque, ML method such as PINN.

Finally, we have shown a simple way of performing automatic event identification, that is to identify time inter-
vals when the underlying diffusive approximation is not valid (Figure  18). This can be due to a number of 
physical effects, including non-resonant interactions (Camporeale, 2015; Camporeale & Zimbardo, 2015), and 
large-amplitude waves (Bortnik et al., 2008), pitch-angle and energy scattering (Tu et al., 2013), and others. Inter-
estingly, some of the identified events (reported in Table 2) have been well studied in the literature, while others 
were not and thus deserve further investigation.

Future steps include extending the present study to a range of first and second adiabatic invariants and even-
tually to the less approximated diffusion equation in energy and pitch-angle (requiring the specification of a 
diffusion tensor that includes cross terms, thus increasing the dimensionality of the problem, see, e.g., (Albert 
& Young, 2005; Camporeale et al., 2013a, 2013b), and the estimates of uncertainties associated either to the 
derived coefficients or directly to PSD solution of the Fokker-Planck equation (Camporeale & Carè, 2021; Chen 
et al., 2020).

Data Availability Statement
Software and data are publicly available on https://doi.org/10.5281/zenodo.6502815 under a Creative Commons 
Attribution 4.0 International license.
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